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Abstract

A GIS framework, the Army Remote Moisture System (ARMS), has been developed to link the Land Information System (LIS), a high per-
formance land surface modeling and data assimilation system, with remotely sensed measurements of soil moisture to provide a high resolution
estimation of soil moisture in the near surface. ARMS uses available soil (soil texture, porosity, K,), land cover (vegetation type, LAI, Fraction
of Greenness), and atmospheric data (Albedo) in standardized vector and raster GIS data formats at multiple scales, in addition to climatological
forcing data and precipitation. PEST (Parameter EStimation Tool) was integrated into the process to optimize soil porosity and saturated
hydraulic conductivity (K,), using the remotely sensed measurements, in order to provide a more accurate estimate of the soil moisture.
The modeling process is controlled by the user through a graphical interface developed as part of the ArcMap component of ESRI ArcGIS.
Published by Elsevier Ltd.
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1. Introduction a variety of other applications. The project was intended to de-

vise a method by which profile soil moisture over watershed-

The Army Remote Moisture System (ARMS) was con-
ceived out of the need for a better understanding and estimation
of profile soil moisture in environmentally diverse, potentially
hostile, data poor, or physically inaccessible areas. Such knowl-
edge is particularly useful to the Army with respect to traffic-
ability modeling and construction engineering, in addition to
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size areas (1000—25 000 kmz) could be characterized and
predicted down to the tactical scale (<100 m). Furthermore,
the system is intended be applicable over any area of interest,
regardless of the amount of existing data or resolution.

The solution was to develop a combination system relying
heavily on land-surface modeling, but additionally using re-
motely sensed estimates of surface soil moisture to provide
more accurate results by employing parameter estimation.
The final requirements were that the system reside within
a Geographic Information System, specifically ArcGIS, and
be usable by persons with little or no hydrology, soil science,
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or remote sensing background. Therefore, the individual com-
ponents of ARMS were linked using ArcObjects, Visual Basic
for Applications (VBA), and external executables and were all
controlled within the ArcGIS framework.

The user friendly nature, spatial data analysis tools, and
visualization capabilities of a Geographic Information System
(GIS) provide a good framework to which models relying on or
predicting spatial data can be appended. The most popular GIS
is the Arc series of software tools developed by ESRI,
including ArcInfo, ArcView, and most recently, ArcGIS.
Alternatively, the GRASS GIS (Neteler and Mitasova, 2005) ex-
ists as an open source choice, particularly when running on UNIX
platforms. The popularity of integrating hydrologic models into
a GIS in fact prompted the creation of the ArcHydro data model
and tools by ESRI for ArcGIS (Morehouse, 2002). Catchment-
Sim, an open source standalone GIS package was developed spe-
cifically for hydrologic model integration (Ryan and Boyd,
2003). Similar to ARMS, Hydrological Simulation Program —
FORTRAN (HSPF) was created using a windows interface
with integrated GIS tools to model and visualize point source
and non-point source pollution (Shen et al., 2005).

For more than 10 years several different types of watershed
models have been integrated with a GIS (Ogden et al., 2001).
The complexity of such model integration varies with the pro-
ject, however. Xu et al. (2001) used a fairly loose integration
by relying on the GIS to provide input data for the PDTank
model. Miller et al. (2002) used a tighter coupling by scripting
GIS functionality to perform hydrologic functions and provide
input to the KINEROS and SWAT models in their AGWA Arc-
View extension. Storck et al. (1998) also used a tightly cou-
pled approach in their analysis of stream flow in the Pacific
Northwest using DHSVM (Wigmosta et al., 1994). Franken-
berger et al. (1999) present the most extreme case of GIS cou-
pling, where the SMR model is written into the GRASS code
rather than being compiled and called externally.

However, in most cases the GIS is used to process and dis-
play inputs and outputs to an external model that can be started
automatically via scripting, or manually. This allows flexibility
in the modeling language, and does not require a model to be
rewritten, only simply modified to process the model inputs
and outputs. ARMS uses this approach by scripting ArcGIS
to provide a Graphical User Interface (GUI), process and con-
vert input data, communicate between external modules, write
metadata, and display output data. Similarly, Jeong and Liang
(2005) developed a data retrieval, analysis, and visualization
system that use GIS tools to accomplish particular tasks, and
requires little scientific knowledge of the user.

2. Background
2.1. Remote sensing of soil moisture

Airborne microwave radiometers have been used for over
three decades to measure surface soil moisture (Jackson and
Schmugge, 1989). Due to the large contrast in the dielectric
constant that naturally exists between water and non-saturated
soil, this technology has been successful for measuring soil

moisture. Water, with a dielectric constant of 80, is vastly dif-
ferent than dry soil, which typically has a dielectric constant
<5. In the field, a water-dry soil mixture exists, yielding a di-
electric constant somewhere between the two values that can
be determined by measuring the soils’ emissivity at micro-
wave frequencies (Schmugge et al., 2002).

Given soil texture and vegetation information, proven and
accurate methods exist to convert the measured emissivity to
volumetric soil moisture (Jackson and Schmugge, 1991). The
actual sampling depth over which the soil moisture can be de-
termined is variable, depending on the soil moisture condition
and radar properties. Most studies agree that the penetration
depth for microwave sensing is between 0.1 to 0.3 times the
wavelength, where the longest wavelengths (L-band) are about
21 cm (Schmugge et al., 2002), which equates to an effective
sampling depth of approximately 2—6 cm. For example, several
large-scale field experiments have been conducted that used mi-
crowave remote sensing to map soil moisture on a watershed
scale, including Monsoon 90 (Kustas and Goodrich, 1994),
Southern Great Plains 1997 (Jackson et al., 2002), Southern
Great Plains 1999 (Jackson and Hsu, 2001), Soil Moisture Ex-
periment (SMEX) 2002 (Jackson et al., 2003), SMEX 2003
(Jackson et al., 2004), SMEX 2004, and SMEX 2005.

However, active microwave sensors such as Synthetic Ap-
erture Radar (SAR) currently represent the best approach for
obtaining spatially distributed surface soil moisture at scales
of 10—100m for watersheds ranging from 1000 to
25000 km?. The magnitude of the SAR backscatter coefficient
(6°) is related to volumetric surface soil moisture (m1,) through
the contrast of the dielectric constants of dry bare soil and wa-
ter. The perturbing factors affecting the accuracy of m; estima-
tion are soil surface roughness and vegetation biomass.

Studies, particularly in the past decade, have generated
a multitude of methods, algorithms, and models relating satel-
lite-based images of SAR backscatter to surface soil moisture
(Table 1). However, no operational algorithm exists using
SAR data acquired by existing spaceborne sensors (Borgeaud
and Saich, 1999). A significant limitation of SAR for watershed
scale applications is that the sun synchronous satellites can pro-
vide only weekly repeat coverage, and even longer for the same
orbital path (generally around 35 days). Moran et al. (2004)
identified a number of priorities in research, validation and de-
velopment to improve the accuracy of SAR-derived m, estima-
tions, including further studies to interpret the effects of surface
roughness and vegetation on the SAR signal, investing in in situ
soil moisture measurement networks, launching new sensors,
and decreasing the price of SAR imagery.

Table 1
Promising approaches using SAR and optical sensors for m; estimation

Approach Examples

Thoma et al. (2005)

Shoshany et al. (2000)
Bindlish and Barros (2002)

Semi-empirical SAR algorithm
SAR for mg change detection
SAR data fusion — passive
and active microwave
SAR data fusion — microwave and optical
SAR plus microwave scattering model

Moran et al. (1997)
Baghdadi et al. (2002)
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2.2. Land-surface models and modeling soil moisture

Land-surface models (LSM’s) are computer simulations that
attempt to describe a host of dynamic environmental processes
including evaporation, transpiration, soil water infiltration, diur-
nal soil and air temperature fluctuations, and radiative flux. The
methods used to estimate such processes differ widely between
LSM’s, as do their necessary input and intended application.
This research used the NOAH soil-vegetation-atmosphere-
transfer type LSM to model soil moisture throughout the profile.
NOAH is a community model, and the result of collaboration
between several organizations for well over a decade.

There are several variables in three categories that are re-
quired to run NOAH. The initial condition data reflect the envi-
ronmental variables, such as soil temperature and soil moisture,
at the beginning of the modeling period. Static parameter data
describe the unchanging physical characteristics of the soil and
vegetation, such as porosity and fraction of greenness. Finally,
forcing data are the atmospheric and climatic data, such as
precipitation and solar radiation, needed for computation at
each timestep during the model run. With initial conditions,
parameter data, and forcing data, NOAH can then be success-
fully run to model a number of hydrologic variables.

Currently, the Land Information System (LIS) (Kumar
et al., 2004) designed at the National Aeronautics and Space
Administration Goddard Space Flight Center (NASA GSFC),
supports the NOAH model and its parameterization to run
over large areas in a gridded fashion, rather than a single point.
It is the LIS implementation of NOAH that is used within
ARMS. The specific algorithms used by NOAH to simulate
soil hydrological and thermodynamic processes are described
in Sridhar et al. (2002).

The NOAH community model is currently used by several
institutions in an operational capacity to model environmental
variables at several different scales. For example, the Global
Land Data Assimilation System (Rodell et al., 2004) at
NASA GSFC uses NOAH as a land surface model and pro-
duces output at 0.25 degree globally and the National Center
for Environmental Prediction uses NOAH as part of its global
mesoscale Eta model at 12 km resolution (Ek et al., 2003). In
addition, CAPS, the predecessor to NOAH, has been used in
several Project for Intercomparison of Land-surface Parame-
terization Schemes (PILPS) experiments to evaluate several
LSM’s over identical space and time.

2.3. Modeling with parameter estimation

To run a land-surface model, variables describing the veg-
etation, soil, and other physical characteristics of the area of
interest must be properly initialized. Usually, look-up tables
based on soil texture and vegetation classification taken from
published studies are used to ascertain appropriate parameters.
In this method, all areas of similar soil type (texture) have the
same soil properties, and all areas of similar vegetation type
(landcover classification) have the same vegetative properties.
For example, NOAH uses the Cosby et al. (1984) classification
system for soil texture to retrieve soil hydraulic parameters

such as saturated hydraulic conductivity (K,) and porosity,
and the Dorman and Sellers (1989) classification system to
classify and parameterize vegetation related parameters such
as the rooting distribution and stomatal resistance. Alterna-
tively, several pedotransfer functions (Brakensiek et al.,
1984; Cosby et al., 1984; Saxton et al., 1986) and neural net-
work programs (Schapp et al., 2001) exist that will equate
standard, easily measured soil parameters, such as particle
size and bulk density, to parameters much more difficult to
measure, such as K, porosity, and air entry pressure. How-
ever, such methods are frequently empirical in nature and
work well for mesoscale and larger resolution applications,
but they do not approximate local physical characteristics
for smaller resolution studies. Consequently, they prove to
be inadequate for use in modeling (Sobieraj et al., 2001).

A solution to empirically derived parameters in localized
modeling is to combine the land-surface model with a param-
eter calibration scheme. Using a parameter calibration or esti-
mation procedure allows mathematically refined parameters
representing local phenomenology to supersede the default
values for a particular variable. This method has been shown
to improve modeling results (Wood et al., 1998). Several docu-
mented methods exist for optimizing input parameters, differ-
ing mostly in type and number of criteria. A simple calibration
scheme could employ the Root Mean Squared Error (RMSE)
between the modeled output and measured value for a variable,
such as streamflow (Boyle et al., 2000) or microwave bright-
ness temperature (Burke et al., 1997), as the single criterion
to estimate input parameters. The input parameter to be opti-
mized is iterated up and down in parameter space between fea-
sible values, continuously minimizing the RMSE. More
advanced and complex examples of parameterization schema
include the Multiobjective Generalized Sensitivity Analysis
algorithm to estimate better hydraulic and thermal soil proper-
ties for the SiSPAT-RS model (Demarty et al., 2004), and the
Multiobjective Complex Evolution global optimization
method to parameterize 13 variables of the Sacramento Soil
Moisture Accounting Model (Yapo, 1998).

ARMS uses the model independent Parameter ESTimation
tool (PEST) (Watermark Numerical Computing, 2004) to re-
fine the soil hydraulic parameters which have been shown to
strongly influence the movement of water through the soil pro-
file. PEST uses the Gauss-Marquardt-Levenberg algorithm and
is flexible in how it interacts with and is controlled by the
other components of LIS. Detailed description of the mathe-
matical model, inputs, and limitation of PEST can be found
in the user manual accompanying the model.

3. ARMS framework
3.1. GIS Interface

A graphical user interface was created using VBA to allow
a user to identify the GIS layers and tables that are to be used
in the modeling procedure. A wizard-type series of forms
prompts a user to enter input data describing the area of inter-
est (AOI), initial conditions, and forcing data. ARMS can use
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either spatially explicit characterizations of the AOI, as in
a landcover classification raster layer, or the user can set a pa-
rameter to be uniform across the AOIL. The same method is
used for setting required initial conditions. For example, if
a raster layer representing the initial soil moisture of the sur-
face layer exists, a user can choose that layer. Alternatively,
a user can specify that the initial soil moisture is constant
(e.g., 25% soil moisture) across the domain, as in Fig. 1.
Soil classification, landcover classification, saturated hydraulic
conductivity, porosity, fraction of greenness, initial soil mois-
ture for the profile, initial soil temperature for the profile, skin
temperature, and albedo may all be designated in one of the
above methods. At a minimum, the user must have a spatially
explicit representation of soil type and landcover type. It is as-
sumed that a user would at least have these data for their AOL
If no other characteristics of the domain are known but soil
and landcover, necessary parameters can be calculated from
just these two inputs through internal look-up tables derived
from pedotransfer functions. At a maximum, all of the above
mentioned parameters may be represented by GIS layers.
Control parameters for LIS and NOAH are also set using the
GUI. These parameters include start time, end time, timestep,
domain boundary, cell size, number of soil layers, and soil
layer thicknesses. The domain boundary can be set by choosing
the extent of an existing layer, or by manually entering in the
lower left coordinates of the AOI, cell size, and number of
columns and rows at that cell size within the AOI (Fig. 2).
The forcing data exist in a .dbf format table added to the
ArcMap session. The table has a predefined format so that
each column represents a different forcing variable, and each

| ARMS S SO mtial Conditions, Stepidiofid 0)

row represents a different timestep. The precipitation data
are also defined with the GUI, and is the most complex vari-
able to configure for use in ARMS. Currently, two methods
are available for entering precipitation. If spatially explicit
precipitation files exist for every timestep as raster layers, an
index file can be created which ARMS will recognize. The in-
dex file is a simple file that for each timestep points to the ap-
propriate precipitation file. While straightforward, the amount
of precipitation data can be tremendous, and rarely available.
To compensate, a multiquadric-biharmonic rainfall interpola-
tor was developed for use in ARMS that will interpolate break-
point rain gauge data temporally and spatially across the
domain (Hardy, 1990). This interpolator runs as a preprocess-
ing procedure before the LIS model is called.

The parameter estimation parameters are the last set of vari-
ables that are set with the ARMS GUI. These include identi-
fying the remotely sensed soil moisture and the time at
which the images were collected. The imagery is added as ras-
ter layers to the ArcMap session.

Once the domain parameters, static parameters, forcing
data, precipitation data, and parameter estimation data are de-
fined, ARMS reformats necessary files, writes several new text
files, and modifies existing files which the separate modules
will use. For example, nearly all input variables to LIS are
read through a card file, a text file that identifies the dozens
of variables on which the modeling procedure is dependant.
These include model setup parameters, pathnames to parame-
ter files, and domain boundary variables. ARMS modifies the
card file depending upon the values entered in the GUI. The
forcing data are converted from .dbf format to a specifically

*)

Layer 1Enter Initial Soil Moisture

, Layer 2 Enter Inial Soil Moisture as...

O}

Layer 3 Enter Intial Scil Moisture as... (s

{ayer 4 Enter Initial Soil Moisture

)
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Soil Moisture

Image

Soil Mosture Layer1 ¥ L rﬂ
Soi Moisture Layer2 ” r“
Soi Meisture Layer 3 ¥ » [_
Soil Mo'sture Layer4 ¥ £ ,_

Help

Constant (ex. 0.18)

Back

Check Compatibility of Layers l

Cancel |

Fig. 1. The GUI allows the user to set initial conditions of the soil layers to an image (raster layer) or constant value.
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Fig. 2. Domain attributes and control variables for the modeling run are set in the GUIL

formatted text file to be read by LIS during runtime. All raster
files that are chosen as inputs are also converted to a text for-
mat for access by the separate modules. Once all the input data
are converted, and the appropriate control files written, param-
eter estimation and modeling can begin.

3.2. Parameter estimation

The parameter estimation routine in ARMS uses the 1-di-
mensional version of NOAH and is controlled by the Parameter
EStimation Tool (PEST) (Watermark Numerical Computing,
2004). The PEST module jointly optimizes K, and porosity
for the AOI. Running PEST over the entire domain is not feasi-
ble for several reasons, though mainly computational time and
power. Instead, stratified samples of cells from across the AOI
are chosen for the procedure. The cells are chosen by determin-
ing the total number of unique combinations of soil and land-
cover types in the domain. A file is created identifying the
combination to which each cell in the domain belongs. PEST
is run for a specified number of cells that represent each unique
combination. Currently, PEST is hard coded to run for up to 8
cells in each unique combination of landcover and soil types.
If the total number of cells for a particular combination is less
than 8, then PEST will run on as many as are present.

For each cell that is to be used in PEST, the initial condi-
tions, static parameters, forcing data, and remotely sensed
soil moisture values are extracted from the appropriate parent
files, and written to text files that PEST will read. Then, 1-D
NOAH is run by PEST until optimized parameters are con-
verged upon. The detailed process by which this happens is
described in the PEST User Manual (Watermark Numerical
Computing, 2004). Once optimized parameters exist for each
chosen cell, those optimized values are averaged within each
unique combination. Optimized K, and porosity raster layers
are created from the average values for each unique

combination across the domain by using the reference file
that tracks to which combination each cell belongs. These op-
timized parameters can supersede the original K,, and poros-
ity estimations for use in LIS.

3.3. LIS and NOAH

The modeling kernel of ARMS is the NOAH LSM accessible
through LIS. LIS resides as an external Windows executable file
compiled using Compaq Visual Fortran v6.6. The model is
a modified version of the standard LIS software package de-
signed to work with the files which ARMS provides. Any spa-
tially explicit LIS inputs the user may have are added to the
ArcMap session as raster layers. These can be either data avail-
able for the area, or the result of parameter estimation. ARMS
reformats the raster layers into text files that LIS can then read
and process. The modification of a card file communicates to
LIS how the model will be run, and with which parameters.

LIS will process all the inputs given to it by ARMS, define
a domain, and then rely on NOAH to perform the actual mod-
eling at each timestep for each cell in the domain. The compu-
tations performed by NOAH are outlined and explained in
Sridhar et al. (2002). After NOAH has completed calculations
across the domain at a particular timestep, LIS will write out-
put files summarizing the calculations. In addition, a text file
of the output profile soil moisture is written that can easily
be imported to ArcGIS for display.

4. Field study

The ARMS system has been tested using data from the
Monsoon 90 field experiment (Kustas and Goodrich, 1994)
at the Walnut Gulch Experimental Watershed in southern Ari-
zona. During Monsoon’90, daily gravimetric soil moisture
data were collected at eight micrometeorological-energy flux
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(Metflux) sites, in addition to standard meteorological vari-
ables and surface fluxes. In addition, an airborne L-band
Push Broom Microwave Radiometer (PBMR) mounted on
a NASA C-130 aircraft was flown at an altitude of 600 m
above the ground to yield soil moisture products derived
from measured microwave brightness temperature (Tb)
(Schmugge et al., 1994). Tb data were collected over an ap-
proximately 8 x 20 km area with a 40 m horizontal resolution
for six days: 212 (Jul. 31), 214 (Aug. 2), 216 (Aug. 4), 217
(Aug. 5), 220 (Aug. 8), and 221 (Aug. 9).

The Metflux data in combination with a network of 88 rain
gauges provided the forcing data necessary to use ARMS. To
test the effectiveness of the system, two model runs were per-
formed. First, the model was run with the best possible soil pa-
rameters (Run 1). This included soil texture, porosity, and Ky,
values derived from the Soil Survey Geographic Database
(SSURGO). This dataset is available only for the United States,
and provides the most detailed estimates of soil property infor-
mation. Next, the model was run for the Monsoon 90 period
using soil textures derived from the Food and Agricultural Or-
ganization (FAO) Digital Soil Map of the World (Run 2). This
dataset provides very course, but globally available data cover-
age. Porosity and K, values initially used in this model run
were derived from the default tables within LIS, which are
based on Cosby et al. (1984). For the first model run (Run 1)
with SSURGO data, no parameter estimation was used. PEST
was used in the second run (Run 2) to optimize porosity and
K., based on the comparison between the model output and
PBMR derived soil moisture values collected in the modeling
period. Fig. 3 compares the watershed averages of K, and po-
rosity for the different soil data sources, and pest.

The ARMS system employing PEST using FAO soil data
minimized both the bias (Fig. 4) and Root Mean Squared
(RMS) error (Fig. 5) across the watershed over the modeling
period when compared with a traditional run using the most
detailed soil data available.

Watershed Average Ksat and Porosity

0.6
# STATSGO
* B SSURGO
0.5 A FAO ]
® PEST
(3
0.4
2
8 03
o
& °
0.2
0.1
0
1.00E-06  1.00E-05 1.00E-04 1.00E-03  1.00E-02  1.00E-01  1.00E+00
Ksat (m/s)

Fig. 3. The K, and porosity values averaged over the watershed for different
data types. The PEST optimization was performed using FAO soil type as
input.
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Fig. 4. The bias over the watershed for the Monsoon *90 modeling period. The
bias was reduced significantly using the parameter optimization routines
within ARMS.

5. Summary

ARMS provides the framework to combine remotely
sensed data, parameter estimation, and land surface modeling
for the estimation of soil moisture at the watershed scale. The
integration of these models takes place within a GIS, made
possible by using the VBA integrated development environ-
ment (IDE) contained within ArcMap on a Windows platform.
As a result, a graphical user interface exists for a user to easily
parameterize the land surface model and to define the model-
ing domain. Scripts perform data format conversions from pro-
priety GIS file formats to text files that are read and processed
by the separate modules of ARMS. Control files, such as the
LIS card file, are created within ARMS, allowing a precom-
piled executable to be used, rather than compiling source
code after each modification, as in traditional hydrologic mod-
eling using C or Fortran source code. A parameter estimation
module exists within ARMS that optimizes soil hydraulic pa-
rameters to which land surface models have been shown to be

Root Mean Squared (RMS) Error
0.12

0.08 /\/

* ///
= 006 —_
© / \\

0.04 / \

/I\.
0.02 —
0
211 212 213 214 215 216 217 218 219 220 221 222
Day of Year

Fig. 5. The RMS error over the watershed for the Monsoon *90 modeling pe-
riod. The RMS error was reduced significantly using the parameter optimiza-
tion routines within ARMS. The intrinsic error in the PBMR data used to
validate the results is 4.5% =+ 1.9% (Peters-Lidard et al., 2003).
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sensitive. Modifications to the robust LIS system were made to
customize the internal models for use with ARMS.

ARMS was designed and developed with the military user
in mind, for use in trafficability assessment, construction engi-
neering, electromagnetic signal propagation and adsorption,
and countermine efforts. ARMS allows a user with little for-
mal background in hydrological sciences, remote sensing,
computer science, or soil science to determine spatial surface
soil moisture using a scientifically sound procedure with ro-
bust modeling tools for use in a variety of applications.

Modeling soil moisture with ARMS over Walnut Gulch us-
ing the Monsoon 90 dataset yielded promising results, when
compared with traditional modeling. A more accurate assess-
ment of the state of the soil moisture over the watershed was
made by reducing errors using the tools within the modeling
system. In the future, modeling efforts will be conducted in
different regions to test and improve ARMS in a variety of ter-
rain and landcover regimes. Ultimately, ARMS will be able to
run worldwide with fairly limited inputs and provide a high
resolution soil moisture product to feed a number of other tac-
tical decision aids. Currently, the system is not yet operational.
In the future, information regarding ARMS and the release of
software can be directed to the United States Army Corps of
Engineers Topographic Engineering Center.
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